This paper was distributed at the Software Quality Week Conference in May, 1997.

Model Based Testing

Larry Apfelbaum John Doyle
General Manager Support Manager
603-879-3555 603-879-3499
larry @sst.teradyne.com Jd@sst.teradyne.com

Teradyne Software & Systems Test
44 Simon Street
Nashua, NH 03060
www.teradyne.com/sst

Abstract

The use of amodd to describe the behavior of a system is a proven and mgor advantage to test
development teams. Models can be utilized in many ways throughout the product life-cydle, induding:
improved qudity of specifications, code generation, religbility andyss, and test generation. This paper
will focus on the testing benefits and review some of the historical challenges that prevented model
based testing and present the solutions that overcame these chalenges. In addition benefits of amodel
based approach are reviewed in the context of two real applications, a call processing feature and a Ul
of aworkflow oriented database system.

Outline:

1. Rationale for modeling

2. Behavioral models as a specification of a product'suse

3. Test design and generation using models

4. Case study: long distance call processing feature

5. Case study: workflow based user interface/ database system
6. Conclusion

1. Rationale for modeling

Models are used to understand, specify and develop systemsin many disciplines. From DNA and gene
research to the development of the latest fighter aircraft, models are used to promote understanding and
provide a reusable framework for product development. In the software engineering process, modes
are now accepted as part of a modern object oriented anadysis and design approach by dl of the mgjor
OO methodologies. Papers and books have been written about the gpplication of modds to test
development and reiability analyss for over two decades, however, except for leading edge companies,
test creation is till amanua process with few quantitative metrics and low reuse. The objective of this

Moded Based Testing

paper isto present an approach for test creation based on a graphical model that describes the behavior
of the system to be tested; and a set of heurigtics that enable tests to be generated from that model.

Modeling is a very economica means of capturing knowledge about a sysem and then reusing this
knowledge as the system grows. For atesting team, this information is gold; what percentage of a test
engineer's task is spent trying to understand what the System Under Test (SUT) should be doing? (Not
just is doing.) Once this information is understood, how is it preserved for the next engineer, the next
release, or change order? If you are lucky it isin the test plan, but more typicaly buried in a test script
or just logt, waiting to be rediscovered. By congtructing a modd of a system that defines the systems
desired behavior for pecified inputs to it, a team now has a mechanism for a structured analyss of the
system. Scenarios are described as a sequence of actions to the system [as it is defined in the modd],
with the correct responses of the system aso being specified. Test coverage is understood and test
plans are developed in the context of the SUT, the resources available and the coverage that can be
delivered. Thelargest benefitisinreuse; al of thiswork isnot lost. The next test cycle can start where
this one left off. If the product has new fegtures, they can be incrementdly added to the modd; if the
quaity must be improved, the model can be improved and the tests expanded; if there are new people
on the team, they can quickly come up to speed by reviewing the mode!.

2. Specifications

This paper assumes that the software to be tested is at the integration or system test phase of the
development process (see Figure 1). The implied test objective is to insure that the system medts its
requirements from the externd point of view. The focus will not be on the implementation, but on how
its users will evduate it. The tests will measure the overdl functiond compliance of the system to the
specification rather than code coverage. These tests are sometimes known as acceptance tests and are
atraditiona implementation of “black box” testing.

Customer ; Requirements > Functional } Design

Spec Spec Spec

Define the Problem Describe a Describe an
Solution Implementation
Code/Unit Integration System ; ;
» Maintenance
—» Test » Test Test »| Production
Implement Verify Verify Solution Deliver Solution
Design Functionality

Moded Based Testing

Figure 1. Although testing occurs throughout the development process, we will focus on the
integration and systems test phases.

The firgt obstacle to overcome in developing tests is to determine the test target. While this may sound
trivid, it is often the first place things go wrong. A description of the product or application to be tested
is essentid. The form the description can come in may vary from a set of cdl flow graphs for a voice
mail system, to the user guide for abilling system’s GUI. A defined set of features and / or behaviors of
a product is needed in order to define the scope of the work (both development and test). The
traditiond means of specifying the correct sysem behavior is with English prose in the form of a
Requirement Specification or Functional Specification [1]. The specification, when in prose, is often
incomplete - only the typical or idedl use of the feature(s) is defined, not dl of the possble actions or use
scenarios. This incomplete description forces the test engineer to wait until the system is delivered so
that the entire context of the feature is known. When the complete context is understood, tests can be
developed that will verify dl of the possble remaining scenarios. Another problem with textud
decriptions is that they are ambiguous, (i.e, “if an invaid digit is entered, it shdl be handled
gopropriately.”) The ‘gppropriat€ action is never defined; rather, it is|eft to the reader’ s interpretation.
For example, you think we should alow the user to retry the entry, but | think we should abort the
command. If you wrote the code and | wrote the tests, they would fall and we will waste time resolving
an issue that could have been done before we even started. At a recent Requirements Engineering
Conference, papers and presentations described the root cause of 60-80% of al defects as incorrect
requirements specifications. [2]

Applying a modd at this leve in a development process can dramaticaly reduce the ambiguity - and
hence, errors. The organization does not have to be at SEI Level 3 or 4 [3] to use these techniques;
they can be gpplied anywhere. The redity is that modeling does not represent a new skill. Test
engineers dways build modds. The only question is whether or not the models are in a persstent form.
The ‘modd’ may only exist for a short time and live on angpkin or in the mind of the engineer. In order
to write a test script or test plan, an engineer must understand the basic steps required to use the
system. Modding at the behaviord leve isvery smilar to flowcharting; the mgor transactions in the use
of the product are defined in a graphical format. The sequence of actions that could occur during the
use of the system are defined. The actions that “could” occur aso imply that that there may be more
than one possible action at a specific point in the process. Most modding techniques support the idea
that there are multiple possible “next” actions. Many methodologies are based on the concept of a sate
machine (see Figure 2), where the transactions represented by arrows in the diagram correspond to the
actions, while icons in a variety of shapes represent the sates. Some modeling techniques support
hierarchicd models, where a state can be replaced by a ‘cdl’ to another modd which defines the
behavior within the state. Hierarchicad models alow complex behavior to be decomposed into smpler
lower levdl modds. Additiond modeling capabilities include the use of conditionals, or predicates, to
make the transactions (arrows) dependent on variables or the current system context. Other textua
formats and notations have been employed in both research and industry include, SDL [4], and Z [5]
both common to the communications sector. Less forma but no less gppropriate is the notations used

Moded Based Testing

by Bezer in his book entitled “Black Box Testing” [6] which reviews severd different types of
gpplications and uses a smple textua notation to define a modd gppropriate for each application.

Transition y——\

in/out
A B

Current State Next State

» Every Transition contains an INPUT EVENT and a NEXT STATE
* A Transition can also define OUTPUTS and ACTIONS

* A Finite State Machine(FSM) operates by traversing from State to
State

Figure 2. A Finite Sate Machine is Composed of States and Transitions

Deveoping a specification in the form of a mode, even if done late in the process, is a very effective
means of; 1) discovering defects in the system (many are made visible by the modeling effort done), 2)
rapidly defining the basis for use scenarios of the system, and 3) presarving this investment for future
releases or other smilar systems. Furthermore the process of developing a model can take place in a
measured series of smal incrementa steps

3. Designing Tests

Subsequent to congtruction of amodel - either complete or partid - the issue of test generation can be
addressed. The test objective is to verify that the systlem will behave properly when a sequence of user
actions occurs. For the purposes of this paper, atest script is defined as the entire sequence of actions
required to create a complete user scenario for the system - from start-up through al of the actions and
ending with shut-down. A test script can be decomposed into a series of individua test primitives that
accomplish specific actions. The primitives will be combined in a specific sequence to provide a test
script that verifies a unique use scenario for the product. Test primitives will typicdly fdl into one of the
following categories.

1) Provide agimulusto the sysem Thisis the most obvious - it controls movement from one
date to another in the behavioral models. It can be a user action like sdlecting a button on a
GUI, invoking afunction of an AP, or diding a number on atdephone. The action can be
directly controlled from the test execution environment.

Moded Based Testing

2) Veify that the system responded correctly. Veification can be difficult to accomplish
because the system’s response must be determined and then compared to an expected
response and/or verify that we are in the correct ‘stat€’ in our syslem. The degree that
veification is used and the means for peforming verification will vary widdy with
goplication type and test objectives. Some examples of verification are: comparing the text
in awindow on a GUI, checking that a diaed phone rings, comparing the return vaue of a
function, or establishing that a billing record is generated after acall. Not dl actions require
direct verification - sometimes the fact that the next stimulus will be accepted is an
acceptable means of verifying that the system is currently in the correct Sete.

3) Se-up the system tedting environment. Tests will often need to control the environment so
that the next action will follow a predictable path. In many environments there are Stuations
that have severa potentia outcomes from the same input. These are often due to multiple
resources being avallable for the action. To make this Stuation determinigtic, and therefore
easer to tedt, the environment can be temporarily pre-alocated or constrained in order to
force a specific sequence or response to occur. Examples of this include: making a phone
line busy so that the cal forwarding feature on it can be tested and changing the Status on an
accounting record so that an error condition can be tested.

4) Report and/or log the results. Depending on the degree of automation in the test execution
environment commands can be embedded that will report the test results to a reporting
system. These embedded commands range from smple print satements for log files, dl the
way to sophisticated inter-process communications with a test management system. In any
Stuation, the means to record and anayze results should be planned.

There are severd approaches that can be used to develop tests from amode [7-12]. Central to most of
these is the concept of apath. A path is asegquence of events or actions that traverse through the model
defining an actud use scenario of the syssem. Each dement in a path, a trangtion or ate, can have
some test primitives associated with it. The primitives will define what tet actions are required to move
the system from its current state to the next date, verify that the ate is reached or check that the
system has responded properly to previous inputs. Once a path through the modd has been defined, a
test script can be created for that path. When this script is gpplied to the actua system, the actud
system will follow the same sequence (or path) as defined by the model path from which the test script
was extracted. This process can then be repeated for another path, which defines another use scenario,
and verifies another sequence of actions. Many methods can be used to sdect paths, each with its own
digtinct objectives and advantages. Operationa profiles, reliability/criticaity data, and switch coverage
al provide different tradeoffs to the type of tests and the resulting coverage.

Other criteria include the qudity or thoroughness desired in the tests. The test objective might range

from the need for a set of tests to verify basic functiondity al the way to a complete product verification
auite.

4. Case Study: Long Distance Calling Service - Hierarchical Call Flow

Mode Based Testing

A long distance sarvice company provides low rates and flexible cal billing to therr cusomers. The
customer receives a discount rate while charging their cdls to any of a number of accounts. When
placing a cdl, the customer dias an access code before the caled number, and is then presented with a
series of prompts to determine the method of billing for the call. The customer may repest the process,
with a different billing method if desred. The sarvice has a rdativdy smple basic cdl flow that can
modeled as shown in Figure 3.

Session_Begin

| E: Receive Inboumd Call |

PlayWelcome

[@mEer || ([@& |

Conwersation Seszsion End

Play Billing | E: 5 call |
Prowpt \4 EqUENCE_

| E: Deterwmine Billing |

| E: Float call ‘

‘ E: Release Call |>_/

Figure 3. High Level Model of Long Distance Platform Call Flow

Modeling the Call Flow

The andlysis required to build the modd, is the same analys's necessary to design atest strategy. The
requirements and assumptions of the platform must be well understood as well as the system response
to variousinputs. The mode is Smply agraphica representation of the behavior of the system. Once
the system behavior is understood and captured in the model, the modd can be used to generate tests
to verify that behavior. In order to verify the long distance application platform, we need to identify the
two cal flow sequences defined by the modd:

1. Inbound Cdl, Determine Billing Information, Hoat Call, Release Call
2. Inbound Cdl, Determine Billing, Hoat Call, Sequence Cdl, Determine Billing, Foat Call,
Release Cdl

The long distance service provider places three requirements on the gpplication, the ability to bill to: 1)
telephone calling card; 2) commercid credit cards, and 3) collect from the called party.

Mode Based Testing

Adding Detail to the Model

The agpplication model must be extended to include the behavior represented by these additiond
requirements. Rather than expanding the high level modd to show the options presented at the
Pay_Billing_Prompt, we create anew level of hierarchy to represent the billing requirements. The
hierarchica method provides aframework that dlows the high level modd to represent the basic call
flow, while the lower level provides the detall necessary to accurately modd the gpplication’s behavior.
The framework is extengble to dlow for additiona levels of hierarchy when modeling complex call
processng sysems. The sub-modd representing the billing options presented in the

FPay Billing Prompt modd is shown in Figure 4:

E: Press 1 E: Enter_ Card Mumber
TS Billing Data_
E: Press 2 Verifie
Collect E: No_Input Required
E: Press_3

Figure 4. Detailed Sub-Model of Billing Options Prompts
Generating Paths from the Model

New festures or requirements added to a system make the number of potential test sequences required
grow draméticdly. These three hilling options increase the potentid number of unique cal-flow
sequences by afactor of Sx, due to the ability to choose different billing methods while using sequence
cdling. As features are added to the platform, the complexity increases. The ability to manage the
complexity of the system as new requirements are added is essentid to platform verification. Manudly
generating the twelve sequences described by this system would be tedious and much of the cal-flow
development and analysis would have to be repeated as new requirements are placed on the system.
The mode provides areuse framework for further development

The modd aso provides a compact representation of the system requirements that are used to
automatically generate the call flow sequences. Automated test generation algorithms can be gpplied to
the modd to determine the call-flow sequences and coverage necessaxry for platform verification. As
new requirements are added to handle additiond billing options - internationd caling plans and account

Moded Based Testing

queries - the gpplication complexity will increase by orders of magnitude. By developing a modd that
captures the system requirements, those responsible for platform verification can manage the explosive
complexity growth over time by adding hierarchy and incrementd detail to amodd. Thisis much more
efficient than manudly ingpecting the system requirements and manudly generating cdl flow sequences
for test cases after each change. The mode can be reused through the product life cycle or for other
smilar products on the platform. In atypica application of this approach, test engineer productivity has
increased by afactor of five to ten over conventiona manua approaches (see Figure 5).

Manual O Execute
Generate Tests
Automated Build Model

0 10 20 30 40 50

Person Days to Complete

Figure5. Testsfor Call Waiting Feature was completed in 12% of the time

5. Case Study: Workorder System-Modeling the Entire Test Environment

A software supplier provides a workorder management and tracking system for operating companies.
The system congists of User Interface (Ul) applications linked together by aworkflow gpplication and a
database management sysem (DBMS). The purpose of the modding outlined in this sudy is to
automate field level verification of the forms based Ul, DBMS and basic transaction flow support in the
workflow gpplication. The god of the modding project was to develop a angle modd of this
gpplication environment. The testing environment conggs of three different testing components, each
with aunique set of requirements for the test generation process. A single model is used to produce :

Scripts for functiond tests through the Ul
Workorder records for verification of transaction support by the workflow application
Test management system header information and build process for each test

Modeling the Workorder Application

The workorder application is specified by a Feature Requirements Specification, aset of operationa
scenarios and process flows, and database definitions. All of these sources are used to derive the
information necessary to build amodd. A forms-based system can be described as a series of
transactions in amode; States, Trangtions and Events are used to represent the behavior of the system.

Moded Based Testing

Data structures within the model are used to represent the database record of the workorder, and
conditional instructions are used to model the transaction semantics (i.e. dependencies) of the
goplication. Themode is built from the perspective of auser of the sysem. All of the actionsthat a
user can invoke are represented graphicaly viaarrows in the model.

I= E [EModel: vworkorder

all@l =] [#]/58] 5

| E: Select_Existing WorkOrder | E—
7
E: Create New WorkOrder gfg:;'e—wwk Order Lo e

Ay

S

Figure 6. Model of Workorder Application

Order

Figure 6 depicts a modd that represents the initid processng of a workorder by a user of the
goplication. The feature specification defines that the user must either “sdlect an existing workorder” or
“create a new workorder” before accessng the forms to submit a “change’, “assgn”, or “closg’
operaion. Thisis shown in the modd as separate trandtions (arrows) leaving the “Entry” dtate. One
trangtion represents the event “ Select Existing WorkOrder” the other “Creaste a New WorkOrder”.
This smple graphica mode captures the flow of the system by representing the state of a workorder as
icons and valid operations in that dtate as trangtions. The modd aso represents the behavior of the
forms Ul gpplication built on top of the transaction processing system. From this behaviord description
three types of test components are developed: a set of test scripts that functiondly exercise the system,
database records used to verify the correct behavior, and test management information to report the
results.

Modeling Behavior to Generate Functional Tests Through the User Interface

The Functiond Requirements Specification and process flow documents define the behavior of the
Application Under Test (AUT). The AUT in this case is aforms-based system that builds a record and
submits a transaction. The documents contain functional descriptions of the application as well as
detaled data descriptions. The specifications are used a the highest leve to determine vdid use
scenarios for processing theforms. At the lowest leve they determine valid inputs and expected outputs
for each fidld in a given transaction as well as error message descriptions. The model based gpproach
captures this detail as well has the behavior represented by the specifications.

Moded Based Testing

The model is processed in order to produce the executable test files required by the Test Environment.
The workorder agpplication is very sraightforward to tet. A smple scripting language is used to
traverse from field to fidd and form to form. Elements of the scripting language are embedded on each
trangtion in the mode in such a way that when the modd is processed, the mode defines a test of the
behavior of the application. For each valid flow (or path) derived from the model, a new test is created.
These paths include the operationa scenarios specified in the requirements specification as wel as other
vauable test scenarios.

Modeling Data and Maintaining Application Context within the Model

The mode can be used to describe flows, but in order to represent the specification and build
meaningful tests, data must be represented as well. Within the modd variables are defined whose
vaues can be changed, conditionaly checked and output at any point in the flow. The modd uses these
variables to both maintain context and generate data in the test scripts. Data vaues are conditiondly
checked within the modd to determine which paths are appropriate in the current context. Multiple
vaues of data are modded to verify the gpplication behavior over specific domains. For example, a
variable caled “Transaction” is maintained to represent the state of the “current transaction”. When the
modd is being processed and enters the “Assgn WorkOrder” sate in Figure 6, the vaue of
“Transaction” will be st to “ASSIGN”. This action defines the current context for later use in
determining gppropriate paths. The dtring is dso used to define input vaues in the forms, and later verify
the DBMS record. The data used to test the gpplication requires more than modeling the values of
data. The datafieldsin aworkorder are defined in terms of:

the transaction for which they are vdid, or they are common to dl transactions

necessity, whether they are required or optiona

type, input or output

datatype, length and vaue

Figure 7 shows the mode of the forms system for creating a workorder. When preparing a workorder
for the CREATE transaction we have separated the fields of the form into three sub-groups. The fidlds
common to al forms are filled in first (CommonFidds), then the fidds “required” for CREATE arefilled
in (CreateRegFidd), then the “optiond” fields are sdectivdy filled in (CreateOptFdd). Each group is
further described in a sub-model, decomposing the system via hierarchy. The sub-models represent
individud fields in the form; they contain the detall necessary to generate input data of vaid and invdid
type, length and vaue. Optiond fields are represented by branched trangtions (arrows) with conditiona
expressons embedded in the trangtion. An example of a conditiona trangtion occurs in Figure 7,
“Transaction==CREATE" (this only alows transactions of type CREATE through this sub-modd).

10

Mode Based Testing

CreateRegFiel
ds

P: Transaction == CREATE
T: OUTSTREAM{Test_Management Header)
Test Nawe: ProjectName Date:CurrentDate
Test Purpose: CREATE
OUTSTREAM{UL_Script)
MenmSelect{CREATE):
OUTSTREAMI{ WorkOrderRecord)
TRANSACTION MNAME CREARTE;

Figure 7. High Level Model of the"CREATE" Form

Modeling Transaction Flow to Generate Database Verification Records

The Workorder Application is used to create and edit workorder records and submit transactions. The
mode captures the workorder process flow, and the values of data throughout this flow. Driving the
workorder system in a test requires that the data vaues be output to a forms processing script in the
proper sequence. Veification of the transaction processing is more difficult. No feedback is provided
through the Ul as to the success of the transaction. The scripting facility has no on-screen verification,
s0 reading back the record in aform is not possible. The proper function of the workflow application is
verified by querying the database directly with a separate database utility. When a path through the
model creates a workorder record the verification record is also created as part of the process. For
example, if the current gtate is CREATED, and an UPDATE transaction is submitted, the modd
contains enough information about the behavior of the system to generate two workorder records, atest
record is generated for the forms Ul, and a verification record for the DBMS. A query is used to
confirm that the output record matches the verification record, and if it does not, an error is logged.

Using the Model to Generate Test Management System Files

The test process in this company requires dl tests to be archived, logged and run from a centra test
repository. Each test is Stored in a test management system and contains an identifier and test header.
The information in the test header is of two classes, basc template information (test name, verson
number, current date) and test purpose. The purpose of the test is a description of the behavior
executed by the test script. Both of these pieces of information are reedily available in the modd. The
modd automatically generates the test management system file for each path generated by the mode!.

11

Moded Based Testing

Summary

In aworkorder system, the forms system definition and the transaction flow pardld each other. A
sngle mode is used to represent them both as a single flow with parale output streams. The modd can
be designed to accommodate any output of the system, even descriptive text for a test management
system. By building amodd that includes dl three mgor components of the test execution environment
we have automated the entire testing process, from test case pecification to the logging of results. Using
atraditional manual approach these steps would be done sequentidly, at amuch greater cost. With the
development of afew script files, over 1000 tests were automaticaly generated, registered in the test
management database, remotely executed and verified while successfully maintaining aresultsfile. A
mgor improvement in both the efficiency of the team and qudity of the product was achieved (see
Figure 8).

Manual Models &
Approach Automation
Build Model |- 10 days
Typ. Change |5 days 15 min
Test Gen 20 min/test 3 sec/test
Test Exec 3-10 min/test 2 min/test
Report Gen |3 min/test 0*

* Automation included Test Management (Buster) integration

Figure 8. Process Metric Comparison for Wor kflow based system

6. CONCLUSION

To make thisapractica solution the economics must be understood. If the technique does not save
money, it will not be used. The traditional metrics used to judtify a purchase of software or to warrant a
change to an exiding process include: lower cost, increased quality, or reduced time to market. Model
Based Tedting is a methodology that has proven its ability to provide dramatic improvementsin al three
of the metrics. The overriding chdlenge to its more broad based acceptance is education. We hope we
have helped in addressing that problem.

Acknowledgments

We would like to acknowledge and thank the teams at L ucent Holmdd and Liberty Corner for ther
help in developing some of the models and systems described here. The teams include: Dr. Sadik
Esmdioglu, SanSan Ting, Chrysanthi Kefda, Debby Kau and Linda Cheng.

12

Moded Based Testing

References:

[1] IEEE standard for Requirements Specification (IEEE/ANS| Std. 830-1984) , IEEE Computer
Society, (830-1993) IEEE Recommended Practice for Software Requirements Specifications (ANS]),
|EEE Standard for Software Unit Testing (ANS!), IEEE Standard for Software Verification and
Vadidation Plans (ANS)) found at: http://standards.ieee.org/cata og/it.html.

[2] Proceedings of the Third IEEE International Symposium on Requirements Engineering, IEEE
Computer Society, 1997.

[3] Paulk, M., Curtis, B., Chrissis, M.B., and Weber, C., Capability Maturity Model, Verson 1.1
The Software Engineering Ingtitute, Carnegie Melon University. Found at:
http://www.sal.cmu.edu/products/publications/96.reports/96.ar.cmm.v1. 1.html

[4] ITU-T.ITU-T Recommendation Z.100: Specification and Description Language (SDL). ITU-T,
Geneva, 1988. More can befound a http:/Aww.sdl-forum.org/.

[5] Spivey, M., The Z Notation: A Reference Manud, Second Edition. Prentice-Hall Internationd,
1992.

[6] Beizer, B., Black Box Testing, New Y ork, John Wiley & Sons, 1995. I1SBN 0-471-12094-4.

[7] Fuiwara S., Bochmann, G., Khendek, F., Amalou, M., and Ghedams, A., “Test Selection Based
on Finite State Models’, IEEE Transactions on Software Engineering, Vol. 17, No. 6., June 1991.

[8] Chow, T. S, “Testing Software Desgn Modded by Finite-State Machines,” |EEE Transactions
on Software Engineering, Vol. SE-4, No. 3, May 1978.

[9] Holzmann, G., Design and Validation of Computer Protocols, AT& T Bell Laboratories,
Prentice Hall, 1991.

[10] Musa, JD., “Operaiond profilesin software reiability engineering,” |EEE Software, 10(2), pp
14-32.

[11] Apfelbaum, L., “ Automated Functiond Test Generation”, Proceedings of the Autotestcon ’95
Conference, |EEE, 1995.

[12] Savage, P., Wdlters, S, and Stephenson, M., “Automated Test Methodology for Operationa
Flight Programs’, Proceedings of the 1997 |EEE Aerospace Conference, 1997.

13

Moded Based Testing

14

