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       STANZ 2010, Aug. 26-27, Sydney, Australia 

Model Based Testing Of Web Applications 

Change is a constant - sounds like an oxymoron but we in the test fraternity all accept it to be true. 

Change is inevitable, of course, and in a rapid development environment such as software 

development, change and constant change is an all too common occurrence. As prudent leaders in the 

testing profession we make allowance for change. It does not change the facts, however; even a minor 

requirement or software change can mean major upheaval in test preparedness, schedules and 

resource needs.  

How do we limit the impact of change, improve our timeliness and responsiveness as well as 

accommodate the ever-increasing demands placed upon our time, talent and resources?  

In response to the challenges posed by change, at DDI Health, we have implemented what we believe 

to be a highly innovative and yet practical, if little practiced or understood technology. Model Based 

Testing (MBT).  
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What Are Web Applications? 

Web applications are those applications that communicate with clients via web protocols such as HTTP, 

WSDL or SOAP for example.  Their preponderance and ubiquity are direct results of the pervasiveness 

of the World Wide Web as well as the increasing utilization by developers of web browser’s to host 

their applications.  Web browsers provide the developer with a unique opportunity to exploit the web 

browser’s inherent capability to relieve them of the burden of having to cater for the various operating 

systems or hardware platforms available to the intended users of the application.   

Today web applications range the gamut from dating sites to gambling sites, ecommerce, on-line 

banking, airline bookings, and corporate websites right through to applications that are not meant for 
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general access but never the less use web browsers to be hosted.  Of this type there are many and the 

number is growing.  At DDI Health many of our main products are web applications, to name a few; FIT 

(Filmless Image Technology) a filmless digital radiological imaging solution; Pathology Web Portal a 

portal that permits over the web secure access for medical practitioners to view patient pathology 

reports;  DDI’s RICS (pathology Request Image Capture System).  Many more examples may be cited.  

Suffice it to say that the realm of web applications is very rich and growing. 

The Difficulty of Testing Web Applications 

Developing web applications essentially is no different to any other software application; you start with 

ideas, mock-ups and requirements and in a managed fashion work towards a working solution.  Testing 

web applications should be just as “routine” a task.  You start with requirements and mock-ups, decide 

on the priorities for testing, design the tests, execute the tests and report on the outcomes.  You go 

through this cycle two, three, or more times until you reach your quality objectives (if you are lucky) or 

you simply run out of time. 

That is an ideal, the reality can be much different and more often than not is. All of a sudden what you 

thought were requirements agreed and understood begin to change, and not just in the ones or two’s 

but eventually in avalanches as the end users or major stakeholders begin to question and challenge 

original concepts and thoughts. 

What was originally agreed would be a link now changes to a button (fair enough).  Then someone 

decides that alteration to signing in is required for legal reasons.  Now signing or logging in requires 

acknowledgement of legal terms and conditions and further requires a check box feature that must be 

checked before the “Login” button is enabled as absolute proof of acknowledgment.  OK, that is good, 

we can handle that.  Another change arrives soon after; now it is required that a unique error message 

for each error type that may arise be displayed instead of the general error message that simply alerted 

the user to errors in their entries.  The error messages now will be unique to each entry field and will 

uniquely reflect the type of error needing correction, it shall be presented in red, 12 point Calibri font 

with the field in question highlighted by a red background– we can test for that it just means a lot more 

combinations than we figured on but we will attend to that, just more tests to design and execute.  

There is nothing strange in any of this; these are the day to day challenges that face a tester, the test 

schedule and undermine the test plan.   

Web applications are a strange beast indeed; they are a hybrid between a web site and a regular 

application; they provide feature rich capabilities to potentially millions simultaneously.  Web 

applications provide the user with an extremely rich experience which is way beyond what mere web 

sites alone can offer.  Consider an ecommerce web application, a Florist web site – say Interflora™.  You 

as a user are at liberty of storing your billing and shipping details, further you may specify multiple 

payment methods which may include personal and corporate credit cards.  You may wish to have 

multiple orders placed on a regular basis to different recipients. This suggest that within the Interflora™ 

web application a highly sophisticated address book and order processing application is built in.  

Consider the complexity of testing robustly just this feature.  Superimpose on this problem all the 
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issues related to cross browser compatibility, aesthetics and usability issues and you begin to 

appreciate the magnitude of the test problem.   

Get it wrong, miss something, or fail to conduct adequate progression and regression testing and real 

problems may occur real fast out in production.  The issue is that defects that are missed in testing, 

upon release of the web application, are immediately available to and are at the mercy of a very large, 

unforgiving and vocal user base.  From thousands to millions of users will be exposed to and use the 

web applications in ways that a test department of five, ten, twenty or a hundred may not be able to 

design and execute enough tests enough times for.  Simply the number of potential usage patterns 

immediately and simultaneously imposed on the web application will exceed the number of patterns 

derived by the test team in the project schedule available to them.  It can be an overwhelming 

experience. 

Adequate testing relies upon adequate test generation, execution and maintenance. Applications that 

have exposure to very large user bases are the most challenging problems facing software test 

organizations.  These organizations must contend with software complexity which is ever increasing 

whilst test schedules are ever shrinking.  In a standalone application if it goes wrong the cries from the 

field won’t be heard for a while – short while, but a while none the less; they may even arrive in a 

steady stream. On the other hand web applications gone wrong in the wild have the potential and 

capacity to release a deluge of complaint and dissatisfaction almost immediately, the worst of which is 

revenue loss to the stakeholders. 

Automating Testing With Scripts 

A response to the dilemma posed in the previous section is test automation through scripting.  This is a 

feasible approach and many organizations have made significant investments in test automation staff, 

licensed tools and frameworks.  Other organizations have decided to employ open source tools that 

support test automation as opposed to licensed software.  

Most test automation tools, open source or proprietary licensed, employ one of two techniques: 

record/replay augmented with user scripting; or outright scripting without resorting to record/replay 

techniques.  Such automation techniques and tools do work and depending on the proficiency of the 

practitioners can and do work well and have been applied very successfully.  However, they do have an 

Achilles heel, time to automate.  The reason is simple before a test can be automated it must first be 

created, validated, executed, then scripted and debugged.  

These are reasonable and necessary steps, albeit time consuming.  Additionally, given the time 

required to adequately undertake these steps, it is clear and evident that the benefits of test 

automation under these circumstances could only ever truly be realized in regression testing – it is 

unlikely that during progression testing that these automation steps can be adequately accommodated.  

Any form of automation must be an improvement to manual test execution. Further, the number of 

tests that can be automated in the time available generally cannot hope to represent the totality of the 

tests created for manual execution and therefore are a thoughtfully selected subset.  A potential issue 

with test scripts is that unless they are highly parameterized they will suffer the same fate as manual 
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test cases.  That is they will suffer from what Beizer
[8]

 calls the “pesticide paradox” whereby tests 

become increasingly less and less useful at catching defects, because the defects they were designed to 

catch have been caught and fixed. 

A further issue is that mostly the test scripts are static.  How can test automation scripts be static?  

Consider the source of the script. Either it was generated during a record/replay session and possibly 

further elaborated through additional scripting, or originated from a manually created and individually 

crafted design encoded in a script.  The script is, from the time of its creation, fixed until altered by its 

creator.  That is fine, as long as the behavior it was created to dynamically exercise does not change or 

change too often or have flow on effects to other related scripts. 

However, reality is that requirements change as we have already mentioned and consequently 

behavior changes and this happens far too often for us to ever feel comfortable or be complacent.  

Change is inevitable.  

The following quote from (Mosley, 1997)
[1] 

 is somewhat humorous (who thought testing was easy?) 

although telling of the risk of automation scripts: 

“I worked with one Visual Basic programmer who had previously constructed and 

maintained an automated suite of test cases for a client-server system. The problem he 

encountered was that the features were never frozen and he was constantly updating 

the test scripts to keep up with all of the changes. Of course, he never caught up. He 

swears he will never do testing again!” 
 

The experience related above is not uncommon or unusual.  As specified behavior changes test scripts 

need to be changed. For this to happen it is prudent to first amend the test design, re-execute it to 

ensure it is sound, and then release the script for general application.  This time consuming activity 

needs to be undertaken on every occasion of a change of the behavior the test scripts were created to 

exercise.  If it was only one script that we had to worry about there would be no issue. However, when 

we are dealing with applications that at their source started from several hundred requirements which 

go through a rapid series of amendments and additions, you can easily see the monumental task that 

arises to create, maintain and update test scripts.  Very quickly the task of maintenance may overtake 

the task of creation or execution.  Many organizations eventually find that keeping up is impossible and 

automation slowly vanishes, or they have to create dedicated teams to maintain these scripts – that is 

added overhead and cost.   

A solution, I believe, to this problem of creating and maintaining test scripts, especially when 

considering the ever increasing demands on testing and the intense complexity of web applications is 

Model Based Testing. 
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Model Based Testing 

In the domain of model based testing it is generally understood that the model is an abstraction or 

simplification of the behavior of the application to be tested.  The model is captured in a machine 

readable format with the sole purpose of acting as both test sequence (trace) generator and oracle.   

Model based testing offers essentially two modes of operation or execution: On-the-fly and off-line 

execution.  Typically off-line execution requires the oracle aspect as the test sequences generated 

through and retained by the model for future execution need to be paired with predictions or 

estimates of the expected results.   A mechanism to compare the actual application response to the 

model predicted response needs to coordinate the recording of actual results and the evaluation 

against the predicted results.  Typically this arrangement has architecture similar to Figure 1: 

Figure 1 Offline Model Based Test 

Architecture  

What Figure 1is saying is that for a given known modeled behavior and a specified input the model can 

automatically (programmatically) calculate or predict the expected response for the application it 

represents providing for automatic exercising of the behavior and comparing actual response to 

predicted response. 

An improvement to this general approach to model based testing is the on-the-fly execution of Model 

Based Test.  In this mode the model generates the test sequences (traces) whilst dynamically 

interacting with the application under test (AUT) – this in a way mimics user interaction with the AUT.  

The model program has been so constructed so as to dynamically interact with the AUT, provide inputs, 

check the responses and attributes returned by the AUT for the inputs and compares those to 

expectation held by the model.  This for me is a simpler and more appealing Model Based Test 

approach to the off-line approach. 
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Figure 2  On-The-Fly Model Based Test 

 

When you consider what the automated model is actually doing it is not so far removed from the basics 

of all testing.  Consider the most basic and primitive Black Box test design, see Figure 3  Black Box Test 

View below. The tester considers the specification of the application under test.  They consider the 

behavior required by the specifications relevant to their interest and then consider the input domain 

that will exercise this behavior – that is the input or stimulus.  Based on the tester’s appreciation of the 

specification and the expected behavior the tester calculates the response of the system to the input or 

stimulus they provide – this then is the response or result. 

Figure 3  Black Box Test View 

 

The tester then, based on their model of the behavior of interest, exercises the application under test 

with a known input for which the behavior has a predictable and predicted response.  Testing then as 

discussed here is consistent with exercising a known or expected behavior; note the emphasis on 
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exercising which denotes a sense of motion or dynamics.  This view is supported by many definitions 

used for software testing. 

“Software Testing consists of the dynamic verification of the behavior of a program”
[1]
 

Thus when considering Model Based Testing in particular, we may rightly state that: 

Model Based Testing is the automated dynamic verification of software behavior under 

programmed model control”. 

Finite State Machine Model Based Testing 

There are many approaches to proposing a model for the purpose of testing. However, in this paper we 

are only interested in models which define the behavior of an application in terms of its States and 

those actions that change its State.  Such models are defined as Finite State Machines (FSM).  

What do we mean by Finite in Finite State machine?  Finite simply indicates the limited number of 

States of the AUT.  If you prefer to review a more formal definition of FSM you may visit NIST
[3]

 online 

which provides one of the better definitions available.  A FSM model then is represented as a graph or 

state chart comprised of a limited (finite) number of nodes (States) interconnected via directed edges 

(Transitions – actions). 

When an FSM model is declared in a machine readable fashion and coupled with an automatic means 

of being navigated under the control of traversal algorithms and provided with an interface 

infrastructure to interact with the AUT, it is a very powerful automated test tool.  Such tools exist and 

one in particular (TestOptimal™) will be discussed later. 

How then to construct FSM models of web applications?  When considering a web application we can 

easily propose a model of the application in terms of FSM’s by following a few simple rules: 

1. Each page of the application can be equated with a State of the application (in a black box 

sense). 

2. Each tab of each page can be considered as a sub-State of that page. 

3. Every action that alters or changes the page of the application in a way that you care about 

results in a State change 

4. Every action taken can be equated with a Transition for the purposes of the model. 

Consider a very basic model that looks at a trivial view of the DDI Health website 
[4]

.  We are interested 

in looking at the behavior of the web site only as far as the Home Page, About Page and Services Page 

are concerned and how we may navigate between them in the manner depicted.  In my mind is an 

abstraction of the situation as follows in Figure 4: 
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Figure 4  Abstraction of DDI Health Website 

 

Now based on the rules defined earlier for proposing a FSM for a particular application of interest we 

may continue to Figure 5: 

Figure 5  FSM of DDI Health Website 

 

We have transformed our abstraction of the website to an FSM representation which now allows us to 

visualize the behavioral interaction in a simplified manner with less distracting detail. 
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An FSM, as can readily be seen, provides for a simplified abstraction of reality where the behavior of 

the reality we are addressing is represented by States (pages/tabs) and Transitions (actions that case 

movement) between States, these are the actions that move us between the pages. 

If we were using the FSM as depicted in Figure 5 to identify tests that we could execute we could for 

example color a single Transition as a test, an example of which is depicted by Figure 6. 

Figure 6  A Single Transition Through FSM As Test 

 

Or, more commonly and potentially more meaningfully, paths through the FSM can be colored as the 

test sequence as depicted by Figure 7. Of course when you consider even this trivial example you can 

already imagine the large number of paths that you could identify.  Try it as an exercise.  Every test is a 

valuable test and is capable of potentially identifying defects.   

It has been shown in several technical papers and publications how exploiting path coverage in FSM’s 

has detected difficult-to-find bugs. 
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Figure 7  Path Through FSM As Test Sequence 

 

For the simple FSM discussed here there are in fact only 6 transitions and if we only focus our coverage 

on transition coverage, then we potentially only have six tests to execute.  However, if we select path 

as our coverage metric it is clear very many more paths may be exercised. 

Thus testing an application is akin to traversing a path through the graph of the model. Utilizing 

techniques derived from graph theory permits us to easily and efficiently use the behavioral 

information captured in the model to generate new and useful test sequences. 

Thus: 

• As the model changes in response to changes in the underlying requirements new traversals 

are able to be generated very quickly resulting in new test sequences thus avoiding the 

“pesticide paradox” discussed earlier 

• By feeding new sets of data to the model in a manner consistent with Data Driven Testing, tests 

generated by the model are constantly revitalized 

Automated MBT 

If the complexity of interaction that we have been discussing thus far was limited to trivial examples as 

discussed then there would be little value in taking this discussion further.  However, life is not so kind, 

the reality is that complexity can be orders of magnitude higher.  Consider a realistic, but basic FSM of 

the actual Web Portal developed by DDI Health website as depicted in Figure 8. 
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Figure 8  Basic Web Portal FSM 

 

The FSM in Figure 8 is not complete; it is only taking one view of the Web Portal – yet for the exercise 

consider the number of potential paths.  The complexity of behavior is easy to see in Figure 9. 
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Figure 9  Closer Up View Web Portal 

FSM  

Again this is still a trivial view of the website in as much as it focuses on only the reachability of pages 

one to the other, individual flash presentations, page attributes.  There is much more complexity that 

can be looked at.  If you feel that you can adequately test all this wealth of interaction to any great 

level of coverage manually or with test scripts I would suggest you need to review your expectations. 

There are several MBT automation frameworks available.  Some are Open Source, others are 

commercial tools. To name just a few there is: NModel
[5]

, an Open Source C# .Net modeling 

environment; Conformiq Test Generator™
[6]

  a commercial tool that employs UML state charts to 

constitute a high-level graphical test script; TestOptimal™
[7]

 a commercial tool using the FSM modeling 

approach with both a community and a full version license available.   

At DDI Health we have successfully applied the TestOptimal™ tool to the verification of a major 

Pathology Web Portal developed for a major Pathology group in Australia.  Through the application of 

MBT we have achieved automated progression testing, which is a major achievement and at least in my 

experience not heard of in industry, it is a break from and a significant advancement on traditional 

automated testing.  Traditionally, automation is strictly applied in regression testing. Added to the 

automation during progression testing at DDI we have also achieved automated regression testing and 

model based load testing.  As you can see the potential for Model Based testing is quite significant and 
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applies to the three pain points for any test organization – progression, regression and load testing, 

topics that I will discuss in the sections that follow. 

TestOptimal™ 

The TestOptimal™ tool, hereafter referred to as TO for brevity, features a graphic user interface and 

Java or xml based scripting to embellish the FSM model with the behavior and verification methods 

necessary to interact with and test a Web Application.  Interaction with the Web Application is 

provided for through a Selenium server that is provided as part of the TO installation.  TO further 

provides for automatic test sequence generation in On-The-Fly and Off-line modes with advanced 

reporting of coverage, evaluation and performance stats coupled with statistical analysis and capability 

to support load and stress testing.  The architecture provided by TO is as depicted in Figure 10.  You 

may read further on TO by visiting their website www.testoptimmal.com. 

TO itself is a Web Application, and is compatible with most web browsers although more commonly 

used through Internet Explorer or Firefox. 

Figure 10  TestOptimal Architecture 

 

Visit http://testoptimal.com/TestOptimalArchitecture.html for a larger image of Figure 10. 
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Model Based Test Considerations 

Model based testing as an approach requires some thought into who will undertake the modeling 

activities and how the models should be generated.  Model based testing requires the attention of very 

enthusiastic testers.  Generating models that are complete and highly capable to addressing 

requirements verification is a complex task.  Further, it should be realized that generating models is in 

fact a development activity the purpose of which is to test. 

The requirements for modeling dictate that the staff assigned to this duty should be: 

1. Competent testers – this is essential as the testing mindset is crucial in considering all the 

implications that need to be addressed in respect of the requirements for the Web Application.  

I do not advocate developers taking on this role 

2. Versed in formal  test techniques to some degree – at least the concept and application of 

Finite State Machine for the purpose of test derivation should not be a foreign concept 

3. Capable of designing 

4. Capable of writing code 

The need for management support cannot be overstated, as with anything new the importance of the 

new approach needs to be under lined by strong management appreciation.  Testing has to be seen as 

an important and integral task central to achieving a quality product. 

To support MBT you need to ensure that the modeling team is involved with the application from the 

inception or requirement elicitation stage of the development lifecycle.  This is crucial as you will have 

key needs that need to be captured along with every other stakeholder’s needs.  Key factors that must 

be heeded and delivered are: 

1. Element IDs should be explicitly created by the application or by a human being. 

2. There should be no reliance on a UI framework to create element ids.  No non-specific 

element id’s, for example id_255. This sort of non-descriptive element ID tends to cause two 

problems:  

a. With non-explicit element id’s each time the application is deployed, different element 

ids could be generated and the result of this is that any code built within the model 

that references the id will likely fail between test runs.  

b. Non-specific element id’s make it difficult to keep track of and determine which 

element ids are required or used within the model 

3. GUID’s must be explicitly created and not dynamically created on each reload of a page 

Treat the models you generate, their code and any associated datasets just as you would treat any 

other software development artifacts – put them under source control.  Regularly check-in and check-

out your models to ensure you do not suffer the catastrophic consequences of losing a day or more of 

work due to hardware or other failure. 

Trace your requirements to the models that address them.  Make sure you apply good requirements 

traceability. 



Copyright (C) Hani Achkar 2010                                                                                                          Page 15 of 28 

 

Start small.  Don’t bite off more than you can reasonably handle, gain confidence with smaller tighter 

models, these also demonstrate competence and garners more management support.  Look for the 

lowest hanging fruit first when modeling.  You can always add more complexity as your models evolve. 

When starting off make sure you have test coverage for the same areas you are modeling via alternate 

strategies to ensure that you do not leave yourself exposed.   

A pilot project is the ideal way to get into MBT or failing that a localized feature set.  The measures 

discussed here are the basic entry level elements to successful MBT. 

How To Model 

Start with the requirements (if you have them), review the site map for the web application if one 

exists and look at all mock-ups and wire frames provided.  Avoid at all cost modeling based on the 

actual implemented application.  Do not model the application behavior based on the behavior you 

observe in the application itself.  This can be an easy trap to fall into and you need to ensure that you 

are wise to this.  Break down the web application based on the individual pages.  Consider Figure 11, 

the inter-relationship of site map, requirements and mock ups come together to provide a full picture 

of the scope of the model. 
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Figure 11  Start To 

Modeling

 

Take each page and generate an FSM model with the page of interest being the starting or initial State.  

Depending on the page, potentially it may also be the ending or final State.  Develop the FSM such that 

it encompasses the Starting State (page of primary interest) and extend the transitions to all other 

States (pages) which can be reached directly from your State of primary interest to exactly one level 

higher and one level lower as depicted on  the site map. 

In the example provided in Figure 11 the full site map would indicate that the Home page at level 0.0 

can directly reach: 

1. 1.0 Terms of Use 

2. 2.0 Register 

3. 3.0 Forgot Password 

4. 4.0 About 

5. Privacy 

6. 6.0 Copyright 

7. 7.0 Contact 
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The resultant FSM model could therefore look like Figure 12Figure 12  Finite State Machine 1. 

Figure 12  Finite State Machine 

1  

Your interest is to fully verify the requirements of your primary page (State) of interest and to confirm 

that off page visits to neighboring pages (States) are achievable – ordinarily that is as far as your 

interest or time goes into modeling the Transitions to and about States of neighboring pages.  

However, if the requirements reflect a deeper association between the pages or highlight an inter-

related functionality or dependency between the actions taken on the separate pages then your 

modeling must take this into consideration and verify this inter-relationship as fully as possible. 

This results in a series of slightly overlapping FSM models but ensures that no major or trivial 

association is missed.  This provides for a systematic approach and ensures close collaboration between 

the separate individuals providing the modeling. 

Employing A Modeling Tool 

It is all well and good to talk of modeling as discussed above. You can easily do your modeling using 

pencil and paper, but that will miss the objective which is to get the model to automate your testing.  

The tool used by DDI Health to achieve this is TO.  How to get the model into TO?  There are two ways 

to achieve this: 

1. Generate a model of the behavior in a FSM format that can be imported by TO 
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2. Create the FSM model directly from within TO’s resources 

TO is capable of importing GraphML and GraphXML formats.  There are very many licensed and freely 

downloadable graph editing  tools available that are capable of producing graphical models which may 

be exported as either GraphML or GraphXML formats amongst others.  The external graph editing tool 

used by DDI Health is yEd
[9]

 from yWorks.  In fact the examples of FSM provided throughout this paper 

have been produced in yEd. 

The alternate and possibly better approach is to generate the FSM directly from within TO.  The 

approach taken by TO is to represent the FSM in a state chart format 

Figure 13  TO Interface 

 

Whether imported from an external 3
rd

 party graph editor or directly created within TO the end result 

is an FSM in a machine readable format.  However, that is not the end of the story there is still work to 

do – no one said you were going to get away without writing code.  The graph editor or the state chart 

editor of TO, only produced an abstract skeleton or logical framework representation of the potential 

behavior, but there is nothing in the model so far that provides for any concrete interaction with the 

real world.  That task will always require coding.  Fortunately, however, once the abstract model is 

entered into TO, TO produces a skeleton XML file that is ready for addition of your code utilizing TO’s 

methods to achieve the outcomes you intend to accomplish.  TO employs what its creators term 

mScripts, a scripting language based in XML, but extended with their own methods.  You can review 

these methods by visiting TO’s mScript
[10]

 Function help page.  An example of mScript from TO’s 

mScript editor is shown in Figure 1 
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Figure 14  

mScript

 

The example shown in Figure 14 shows the style of mScript that we have adopted at DDI Health.  In 

order to ensure the maintainability of the models as well as future re-utilization, the decision was made 

not to use any hard coding within the models.  That is to say that any parameters that are derived from 

sources not directly controlled within the model (such as element id’s, GUID’s, xpaths etc.), or functions 

that are called repeatedly or are subject to change, were parameterized.   

Consider line 276 in the example provided, Figure 14.  The mScript method for “type” or enter a value 

into an editable field is explicitly: 

type (java.lang.String locator_p, java.lang.String keyString_p) 

We could have put explicit values for the java.lang.String locator_p, which is the element locator and 

an explicit value for java.lang.String keyString_p.  That would result in an action mScript like: 

<action code=$type(‘xpath=.//*[@id='usename']’,’Joe123bad’)> 

Where .//*[@id='usename'] is the element locator for the username field and Joe123bad is the explicit 

user name.  However this style of coding is seen by us as very poor practice and prone to being easily 

broken, especially when developers change their code and element locators change commensurately.  
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So don’t do it is the simple advice, keep your coding as dynamic and manageable as you can.  For this 

and another very important reason, we wished to drive our models with multiple datasets so we can 

take advantage of the Data Driven approach to testing, we decided on paramterizing out anything we 

wished to manage and control external to the model. 

So to achieve our aims the mScript we generated in line 276 is: 

<action lid="276" code="$type('$getData('ElementNamesDS','UsernameEdit')','$getData('BadDS','Username')')"/> 

In this example $getData('ElementNamesDS','UsernameEdit')' fetches the the xpath locator for the editable 

field (username) and $getData('BadDS','Username') fetches absolute value that needs to be entered into 

the field. 

An important feature of TO that, at DDI Health, we have found most helpful is the Model Graph which 

TO generates based on the model that you have defined.  This graph has two unique properties that 

are essential in any modeling: 

1. Auto-navigation based on a preset delay between Transitions.  This is extremely useful in: 

a. Communicating with management and other stakeholders 

b. Training and educating testers 

2. Debugging and validating the model.  By stepping through the model and observing the State 

transitions and the actual Transitions firing,  whilst simultaneously observing the AUT under 

model control it is relatively easy to determine whether the behavior observed is consistent 

with the specifications and requirements and whether model and AUT are in synch. 

The graph of the model highlights the Transitions as they are fired and also highlights the States as they 

are occupied.  This makes navigating the model very simple and relatively easy to compare against the 

AUT in operation. 

An example of the Model Graph feature of TO is provided in Figure 15. 
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Figure 15  TO FSM Graph In 

Action

 

The Abstract Model 

The points raised above should be heeded by anyone attempting programming for modeling.  The 

additional benefits to this approach are that models may be built in advance of the actual 

implementation using the requirements alone.  It is understood that in the end concrete values must 

be supplied to the model.  These concrete values of element ids, GUID ids, Xpath’s can all be derived 

from the actual AUT when it is available.  If these were available prior to the AUT being produced then 

these could have been utilized earlier, reality of course is that not even the developer’s know these 

ahead of time.  So concretization can in general only occur once a build is released to QA.  However, It 

is unlikely that during progression testing that these automation steps can be adequately 

accommodated. not the models can still be built to a high degree of completion without these due to 

the parameterization discussed already. 

Concretizing The Model 

Once you have an abstract model in TO you need to concretize it. This you can do surprisingly easily 

and efficiently.  You have two paths to follow in this regard.  You can either use MS Internet Explorer or 

Mozilla Firefox.  Both these browsers have developer tools either as add-ons or integrated natively.  

Our preference at DDI Health has been to use Firefox which has an exceptional wealth of developer 

aids that just make the task of concretization so easy.  It has to be said that all Internet Explorer has to 

offer in the form of a developer aid is the Developer Toolkit which can be downloaded for IE7 or is 

native to IE8 and this developer tool kit it has to be said, comes in as a very poor second to the add-ons 
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available to Firefox.  Certainly we employ Internet Explorer as we do have products at DDI Health which 

are exclusively hosted through Internet Explorer but it simply is not as easy to work with. 

In respect of Firefox there are some key add-ons that you must ensure that you have, these are: 

1. DOM Inspector 

2. Firebug 

3. FireXPATH – an extension to Firebug 

4. XPATH Checker 

5. XPather 

These add-ons are free and absolutely crucial to your activities here after, reference to Firefox will be 

exclusive from this point.  So how do you actually then get the concrete values that you need?  Start by 

starting your application in Firefox.  For the sake of this exercise we will look at Google News, Figure 16. 

Figure 16  Google News Web 

Site

 

Next you want to extract the concrete value for the Search News Field.  It is simply a matter of right-

clicking and selecting Inspect Element from the drop down list. 
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Figure 17 Inspect 

Element  

 

Once Select Element is chosen Firefox opens the Firebug tool.  Note that  the Xpath tab is selected, if it 

is not then select it.  Select the selection icon and focus on the Search News field.  The Xpath is 

instantly displayed. 

Figure 18  Concrete 

Xpath

 

The Xpath in this instance is .//*[@id='page-header']/table/tbody/tr/td[2]/form/div/input[6].  Now as 

well as Xpath’s, you can utilize the full features of Firebug and explore the web page code and extract 

all attributes, image references and so on.  The process is as simple as that. 

In this manner you can systematically work through and very rapidly concretize your models.  Of course 

the process of concretization does take time, but remember your abstract model and code are, or 
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should be complete.  All you are now doing is providing the references to the concrete element values. 

The time required generally is under a day.  Then you can execute your model. 

Model Execution 

Executing the model through TO is a relatively simple process and depending on the complexity and 

extensiveness of your model it will execute mostly as fast as you set it to run.  The models may employ 

any one of several graph traversal algorithms to generate the test sequences on-the-fly.  These are: 

1. Optimal Sequencer - uses mathematical optimization algorithms to generate test sequences that cover 

all of the transitions on the model with the least number of steps. 

2. Random Sequencer - generates test sequences by randomly choosing a transition from each state to 

get to the next state. This process is repeated until any one of several stop conditions evaluates to true. 

3. Greedy Sequencer - similar to Random Sequencer except that it prefers un-tested transition over already 

traversed transitions. 

4. mCase Optimal Sequencer - uses mathematical optimization algorithms to generate the test sequences 

to cover 100% of the transitions included in an [mCases | mCaseNode]. The test steps defined in each 

mCase need not be consecutive or in any order, the system will find the optimal way to fill the gap with 

transitions from the model. The algorithm used is an extended version of Chinese Postman Walk 

algorithm to handle optional transitions and multiple traversals. 

5. mCase Serial Sequencer – mCase Serial is similar to mCase Optimal although the order of the 

transition in mCase are explicitly executed in the order they are defined 

Model execution may further be set to be Transition based or Path based. 

6. Transition based - generates sequences to coverage of all transitions in the model or in mCase at least 

once dependent on the sequencer selected.  

7. Path based (Paths) - generates sequences to not only cover all transitions at least once, but includes 

permutations between incoming transitions and outgoing transitions. This type of coverage is much 

more extensive.  

The model execution discussed thus far provides for highly capable and extensive functional testing 

within a rapid development environment. 

However, a further benefit of model based testing and especially from within the TO tool is that each 

and every model can be repurposed to another area of need; load testing.  Unlike other load testing 

techniques, which rely on capturing interaction sequences from a user to an application, and then 

replaying these sequences or traces as many times over as required to produce a load consistent with a 

user base of N-users.  TO can be used to launch each model on as many threads as you require (this 

requires the TO runtime server license and purchase of the number of threads you need to replicate).  

Each model represents a very realistic facsimile of an actual user interacting with the application and in 

as much as you apply Data Driven techniques as well you can arrange for a very massive, very realistic 

load on the application.  So your load testing comes almost for free, once you have built your models. 

The end result of the execution is a series of files.  Depending on your code you may have generated a 

lot of Log Message which will be found in the mScript Log file, apart from this other files generated 

include Selenium Server and Console Log Files all of which are instructive and useful in debugging 
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failing models.  Amongst the most useful log files produced are from the Stats Tab of the TO 

application.  This tab retains the full execution results that indicate useful metrics such as page average 

load times, number of passed and failed requirements, which is crucial for any professional test 

organization and is essential for any formal reporting. 

Further Benefits of Model Based Testing 

Defects removed in stages prior to implementation are 100 to 1000 times cheaper than discovering and 

repairing defects post implementation. So when you consider that: 

• Requirements gathering, analysis and architectural design accounts for between 60% and 70% 

of all defects introduced into a software product (from studies conducted by Kirova
[11]

) 

• Coding accounts for 30% to 40% of defects discovered in software products (Kirova
a[11]

) 

• Up to 80% of all software development time is spent on locating and correcting defects 

(includes test)(NIST 2002) 

Any means that can improve the situation in respect of reducing seeded defects and removing defects 

with in specifications is of great importance. 

Beyond the significant benefits gained through the resultant automation arising from the modeling and 

Model Based Testing there is another important and sometimes overlooked benefit.  Modeling has the 

distinct capability to reveal defects in requirements and specifications.  These defects include 

deficiencies, internal and external inconsistencies, ambiguities, omissions, misstatements, 

contradictions and a whole host of other “sins” that all requirements are prone to experience.  The 

benefit to the project, not just the test organization, is that very early in the development lifecycle, and 

potentially well in advance of the development team, the models can and do, highlight problems in the 

requirements.    

This is not surprising, on a one for one comparison with Fagan review process and modeling, in an 

experiment, 100 requirements defects were purposely introduced into a functional requirement 

document (inaccuracies, ambiguities, inconsistencies, incompleteness, etc.) 

• Fagan
[12][13]

 review process detected 34 defects (consistently), that is an efficiency of 34% 

• Model approach detected Fagan 34 defects PLUS 56 other defects, that is 90 defects and they 

were discovered in the first pass, that is an efficiency of  90% 

The latter results speak for themselves.  Robust static Reviews such as Fagan reviews are at best 34% 

efficient and are capable of detecting only, (and notably not every instance of) 

• Requirement ambiguity 

• Requirement incompleteness 

• Requirement Inconsistency 
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Models on the other hand as opposed to static review methods have been shown to detect, 

consistently: 

• Requirement ambiguity 

• Requirement incompleteness 

• Requirement Inconsistency 

 Plus, 

• Feature/Function Interaction 

• Inconsistency 

• Error 

• Deficiency 

Conclusion 

At DDI Health we have very successfully and competently adopted Model Based Testing as a systematic 

approach to providing us with: 

1. Highly adaptable test generation capabilities 

2. Very rapid model updates and test regeneration and execution 

3. Highly effective functional testing 

4. Automated progression testing – this on its own is highly noteworthy 

5. 100% regression testing (as far as modeled behavior goes and that at this writing for the 

Pathology Web Portal exceeds 95% of all requirements)  

6. Extremely short test cycles in the order of a day for exceptional coverage 

7. Repurposed functional tests that acted as highly capable load tests almost immediately 

8. Happier testers 

9. Secure and satisfied test managers 

10. Satisfied stakeholders 

The days of working late nights and weekends seem to be fading for the projects that are Model Based 

Testing focused.  We plan to further develop our Model Based Testing capabilities and currently have 

seven test engineers who are trained or being trained in this technique. 

We certainly rely on TO, however we do have plans to introduce other MBT technologies.  We believe 

that solid knowledge in MBT needs to be backed by multiple tools and techniques to allow us to be 

adaptable and not allow the weakness of any one approach limit our capabilities. 

We count the MBT approach applied to the Pathology Web Portal through TO have been a salient 

success story and it is our view that we shall see many more such successes. 
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Do very seriously consider MBT for all web based applications and think also of non-web applications as 

well.  Model Based Testing does work, has worked for us, and does provide serious efficiencies.  TO is a 

capable tool that you should investigate, we have been impressed with the quality of the support we 

have received from the TO support team.  The responsiveness from the support team at TO has been 

exceptionally timely, professional, courteous and very helpful. 

Good luck in your endeavors. 
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